
1

09. March, 2023

InpulseX Staking

SolidProof_io @solidproof_io

https://twitter.com/SolidProof_io
https://t.me/solidproof_io

Disclaimer	
3
Description	
5
Project Engagement	
5
Logo	
5
Contract Link	
5
Methodology	
7
Used Code from other Frameworks/Smart Contracts (direct imports)	
8
Tested Contract Files	
9
Source Lines	
11
Risk Level	
11
Capabilities	
12
Inheritance Graph	
13
CallGraph	
14
Scope of Work/Verify Claims	
15
Modifiers and public functions	
24
Source Units in Scope	
26
Critical issues	
28
High issues	
28
Medium issues	
28
Low issues	
28
Informational issues	
28
Audit Comments	
28
SWC Attacks	 29

2

Disclaimer

SolidProof.io reports are not, nor should be considered, an “endorsement”
or “disapproval” of any particular project or team. These reports are not,
nor should be considered, an indication of the economics or value of any
“product” or “asset” created by any team. SolidProof.io do not cover
testing or auditing the integration with external contract or services (such
as Unicrypt, Uniswap, PancakeSwap etc’...)

SolidProof.io Audits do not provide any warranty or guarantee
regarding the absolute bug- free nature of the technology analyzed,
nor do they provide any indication of the technology proprietors.
SolidProof Audits should not be used in any way to make decisions
around investment or involvement with any particular project. These
reports in no way provide investment advice, nor should be leveraged
as investment advice of any sort.

SolidProof.io Reports represent an extensive auditing process intending to
help our customers increase the quality of their code while reducing the
high level of risk presented by cryptographic tokens and blockchain
technology. Blockchain technology and cryptographic assets present a
high level of ongoing risk. SolidProof’s position is that each company and
individual are responsible for their own due diligence and continuous
security. SolidProof in no way claims any guarantee of security or
functionality of the technology we agree to analyze.

Version Date Description

1.0 23. February 2023 • Layout project

• Automated- /Manual-Security Testing

• Summary

1.1 9. March 2023 • Reaudit

3

http://SolidProof.io

Network

Ethereum, BSC, Avalanche, and Polygon

Website

http://www.inpulsex.io/

Telegram

https://t.me/InpulseX_Official

Twitter

https://twitter.com/InpulseX_io

Discord

https://discord.gg/kH6PaHsNHK

Facebook

https://www.facebook.com/InpulseX/

Instagram

http://www.instagram.com/the_nftx/

TikTok

https://www.tiktok.com/@inpulsex_official

Medium

https://medium.com/@InpulseX_Official

4

http://www.inpulsex.io/
https://t.me/InpulseX_Official
https://twitter.com/InpulseX_io
https://discord.gg/kH6PaHsNHK
https://www.facebook.com/InpulseX/
http://www.instagram.com/the_nftx/
https://www.tiktok.com/@inpulsex_official
https://medium.com/@InpulseX_Official

Description

InpulseX is an ambitious project created to offer unwavering support to
the biggest mission of humankind, which is to become a multiplanetary
species.

The InpulseX ecosystem will take the lead within the blockchain
community, bringing awareness and raising financial resources to help
write this exciting new chapter.

Together we will make history.

Project Engagement

During the Date of 23 February 2023, InpulseX Team engaged
Solidproof.io to audit smart contracts that they created. The engagement
was technical in nature and focused on identifying security flaws in the
design and implementation of the contracts. They provided Solidproof.io
with access to their code repository and whitepaper.

Logo

Contract Link

v1.0

• https://github.com/KenshiTech/InpulseX/tree/master/staking

• Commit: b82c25db733303f34aae4363d17f608717f275ec

v1.1

• https://github.com/KenshiTech/InpulseX/tree/master/staking

• Commit: 8c872789d3d06a74ede9d7d2081a42d469be6102

5

https://github.com/KenshiTech/InpulseX/tree/master/staking
https://github.com/KenshiTech/InpulseX/tree/master/staking

Vulnerability & Risk Level
Risk represents the probability that a certain source-threat will exploit
vulnerability, and the impact of that event on the organization or system.
Risk Level is computed based on CVSS version 3.0.

Level Value Vulnerability Risk (Required Action)

Critical 9 - 10

A vulnerability that
can disrupt the
contract functioning
in a number of
scenarios, or creates a
risk that the contract
may be broken.

Immediate action to
reduce risk level.

High 7 – 8.9

A vulnerability that
affects the desired
outcome when using
a contract, or provides
the opportunity to
use a contract in an
unintended way.

Implementation of
corrective actions as

soon aspossible.

Medium 4 – 6.9

A vulnerability that
could affect the
desired outcome of
executing the
contract in a specific
scenario.

Implementation of
corrective actions in a

certain period.

Low 2 – 3.9

A vulnerability that
does not have a
significant impact on
possible scenarios for
the use of the
contract and is
probably subjective.

Implementation of
certain corrective

actions or accepting
the risk.

Informational 0 – 1.9

A vulnerability that
have informational
character but is not
effecting any of the
code.

An observation that
does not determine a

level of risk

6

Auditing Strategy and Techniques
Applied
Throughout the review process, care was taken to evaluate the repository
for security-related issues, code quality, and adherence to specification
and best practices. To do so, reviewed line-by-line by our team of expert
pentesters and smart contract developers, documenting any issues as
there were discovered.

Methodology

The auditing process follows a routine series of steps:

1. Code review that includes the following:

i) Review of the specifications, sources, and instructions provided to SolidProof
to make sure we understand the size, scope, and functionality of the smart
contract.

ii) Manual review of code, which is the process of reading source code line-by-
line in an attempt to identify potential vulnerabilities.

iii) Comparison to specification, which is the process of checking whether the
code does what the specifications, sources, and instructions provided to
SolidProof describe.

2. Testing and automated analysis that includes the following:

i) Test coverage analysis, which is the process of determining whether the test

cases are actually covering the code and how much code is exercised when
we run those test cases.

ii) Symbolic execution, which is analysing a program to determine what inputs
causes each part of a program to execute.

3. Best practices review, which is a review of the smart contracts to improve efficiency,
effectiveness, clarify, maintainability, security, and control based on the established
industry and academic practices, recommendations, and research.

4. Specific, itemized, actionable recommendations to help you take steps to secure
your smart contracts.

7

Used Code from other Frameworks/Smart
Contracts (direct imports)

Imported packages:

v1.0

 

8

Tested Contract Files

This audit covered the following files listed below with a SHA-1 Hash.

A file with a different Hash has been modified, intentionally or otherwise,
after the security review. A different Hash could be (but not necessarily)
an indication of a changed condition or potential vulnerability that was
not within the scope of this review.

v1.0

File Name SHA-1 Hash

contracts/interfaces/
IERC165.sol

bbb2af818780ce0aee1910aa988e4
c2d3738bcfb

contracts/interfaces/
IERC1363.sol

f4b26a591eefe329d454153d428a58
f4977191c2

contracts/interfaces/
IERC1363Receiver.sol

72b322bc3ebf8acc82847969d9628
e5c1373ea9f

contracts/interfaces/
IERC721.sol

2b4172e8f2424ad2ad30f888474c3d
31e07230a8

contracts/interfaces/
IERC1155.sol

a212fd8cab21a6d07adcb22cb3e04
61a40e17047

contracts/interfaces/
IERC1363Spender.sol

91959bd12baa5a3922d1c686f6e15
86aac04fe13

contracts/interfaces/
IERC721Receiver.sol

ed74e31fbacf270281fc36ff0e16e49
ea6637ee1

contracts/interfaces/
IERC1155Receiver.sol

d12019ad5816a2b6007c59278a5af
9947af04dd5

contracts/interfaces/IERC20.sol e31040bd37a737946ff14ab726582b
b99f22d35e

contracts/interfaces/
IERC721Enumerable.sol

841bc27064d5a0652115b3832c586
87fbab5e41c

contracts/Repo.sol 0b03cb7e65a135d12fa3d0661a965
93663bf9e01

9

contracts/staking/ERC1363.sol eea7fe107f9e57547beea73784276d
aad35d4a3f

contracts/staking/ERC721.sol 8bb319394a59b060c226d81b11086
ff9158ba73c

contracts/staking/ERC20.sol a5e83ce3e17b52ccf1b072a4c200cb
faa630ef81

contracts/staking/ERC1155.sol fc0245d3989b16aae6326a7fd47ebe
06fdf7c8fe

contracts/Base.sol 1ba4c2f74dc91d350b4cff4fa48e482
30f8ed479

contracts/utils/NFTSweep.sol 104961e6f54efdd1b6654f07008479
469f154385

contracts/libraries/Context.sol 7b80abcebc3aefb2e038554fe625f0
486a92cce2

contracts/libraries/Address.sol 042ebb5c266fa61fbab8035f02824c
050cc6e89d

contracts/libraries/Ownable.sol ebde8ee4a2625d1784506ced979a9
1e5faad6308

contracts/rewards/ERC20.sol 7af0134aa55596282af5af73290387f
98c51a990

contracts/rewards/ERC1155.sol 24bea42990479bd33c56ec7b4776b
31704931937

10

Metrics
Source Lines

v1.0

Risk Level

v1.0

11

Capabilities

Components

12

Inheritance Graph

v1.0

 

13

CallGraph

v1.0

14

Scope of Work/Verify Claims

The above token Team provided us with the files that needs to be tested
(Github, Bscscan, Etherscan, files, etc.). The scope of the audit is the main
contract (usual the same name as team appended with .sol).

We will verify the following claims:

1. Is contract an upgradeable

2. Deployer cannot mint any new tokens

3. Deployer cannot burn or lock user funds

4. Deployer cannot pause the contract

5. Deployer cannot set fees

6. Deployer cannot blacklist/antisnipe addresses

7. Overall checkup (Smart Contract Security)

15

Is contract an upgradeable

Name

Is contract an upgradeable? No

16

Write functions of contract

v1.1

 

17

Deployer cannot mint any new tokens

Name Exist Tested Status

Deployer cannot mint - - -
Max / Total Supply N/A

18

Deployer cannot burn or lock user funds

Comments:

v1.0

• Owner cannot lock user funds by changing the staking token address

because it can only be set once

Name Exist Tested Status

Deployer cannot lock ✓ ✓ ✓
Deployer cannot burn - - -

19

Deployer cannot pause the contract

Name Exist Tested Status

Deployer can pause - - -

20

Deployer cannot set fees

Comments:

v1.1

• The owner can set the penalty fees for any address to up to 25% only

Name Exist Tested Status

Deployer cannot set fees over 25% ✓ ✓ ✓
Deployer cannot set fees to nearly 100% or to 100% ✓ ✓ ✓

21

Deployer can blacklist/antisnipe addresses

Name Exist Tested Status

Deployer cannot blacklist/antisnipe addresses - - -

22

Overall checkup (Smart Contract Security)

Legend

Tested Verified

✓ ✓

Attribute Symbol

Verified / Checked ✓
Partly Verified ⚑
Unverified / Not checked ✘

Not available -

23

Modifiers and public functions

v1.1

24

rewards/ERC20.sol rewards/ERC1155.sol

Base.sol Staking/ERC20.sol

Staking/ERC721.sol

Ownership Privileges:

• Base.sol:

- Owner can set unlock time for the staked tokens to any arbitrary

value but only once

- Allow/Disallow users to unstake with a penalty. Therefore, owner

can do this to any address at any time but the penalty fees cannot
be more than 25%

- Set penalty receiver address.

• staking/ERC20.sol:

- Owner can update the staking token address only once, and it

cannot be updated

- Note: This same exist with the staking of ERC1155, ERC721, and

ERC1363

• rewards/ERC20.sol:

- Set/Update reward token, but only once

- Recover the tokens from contract. Hence, withdraw reward token

from the contract.

- In the contract, any user can transfer the reward token but only

owner can withdraw it.

- Note: This same exist with rewards/ERC721.sol,

25

Staking/ERC1363.sol

Source Units in Scope

v1.0

Legend

Attribute Description

Lines total lines of the source unit

nLines normalised lines of the source unit (e.g. normalises functions
spanning multiple lines)

nSLOC normalised source lines of code (only source-code lines; no
comments, no blank lines)

Comment Lines lines containing single or block comments

26

Complexity Score
a custom complexity score derived from code statements that
are known to introduce code complexity (branches, loops, calls,
external interfaces, ...)

27

Audit Results
Critical issues

High issues

Medium issues

Low issues

Informational issues	

Audit Comments

We recommend you to use the special form of comments (NatSpec
Format, Follow link for more information https://docs.soliditylang.org/en/
latest/natspec-format.html) for your contracts to provide rich
documentation for functions, return variables and more. This helps
investors to make clear what that variables, functions etc. do.

09. March 2023:

• There is still an owner (Owner still has not renounced ownership)

• Read whole report and modifiers section for more information

No critical issues

No high issues

No medium issues

No low issues

No informational issues

28

https://docs.soliditylang.org/en/latest/natspec-format.html
https://docs.soliditylang.org/en/latest/natspec-format.html

SWC Attacks

ID Title Relationships Status

SW
C-1
36

Unencrypted
Private Data
On-Chain

CWE-767: Access to Critical
Private Variable via Public
Method

PASSED

SW
C-1
35

Code With No
Effects

CWE-1164: Irrelevant Code PASSED

SW
C-1
34

Message call
with
hardcoded
gas amount

CWE-655: Improper
Initialization

PASSED

SW
C-1
33

Hash
Collisions With
Multiple
Variable
Length
Arguments

CWE-294: Authentication
Bypass by Capture-replay

PASSED

SW
C-1
32

Unexpected
Ether balance

CWE-667: Improper Locking PASSED

SW
C-1
31

Presence of
unused
variables

CWE-1164: Irrelevant Code PASSED

SW
C-1
30

Right-To-Left-
Override
control
character
(U+202E)

CWE-451: User Interface (UI)
Misrepresentation of Critical
Information

PASSED

SW
C-1
29

Typographical
Error

CWE-480: Use of Incorrect
Operator

PASSED

SW
C-1
28

DoS With
Block Gas
Limit

CWE-400: Uncontrolled
Resource Consumption

PASSED

29

https://swcregistry.io/docs/SWC-136
https://cwe.mitre.org/data/definitions/767.html
https://swcregistry.io/docs/SWC-135
https://cwe.mitre.org/data/definitions/1164.html
https://swcregistry.io/docs/SWC-134
https://cwe.mitre.org/data/definitions/665.html
https://swcregistry.io/docs/SWC-133
https://cwe.mitre.org/data/definitions/294.html
https://swcregistry.io/docs/SWC-132
https://cwe.mitre.org/data/definitions/667.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-131
https://cwe.mitre.org/data/definitions/1164.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-130
http://cwe.mitre.org/data/definitions/451.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-129
https://cwe.mitre.org/data/definitions/480.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-128
https://cwe.mitre.org/data/definitions/400.html

SW
C-1
27

Arbitrary
Jump with
Function Type
Variable

CWE-695: Use of Low-Level
Functionality

PASSED

SW
C-1
25

Incorrect
Inheritance
Order

CWE-696: Incorrect Behavior
Order

PASSED

SW
C-1
24

Write to
Arbitrary
Storage
Location

CWE-123: Write-what-where
Condition

PASSED

SW
C-1
23

Requirement
Violation

CWE-573: Improper Following
of Specification by Caller

PASSED

SW
C-1
22

Lack of Proper
Signature
Verification

CWE-345: Insufficient
Verification of Data
Authenticity

PASSED

SW
C-1
21

Missing
Protection
against
Signature
Replay Attacks

CWE-347: Improper
Verification of Cryptographic
Signature

PASSED

SW
C-1
20

Weak Sources
of
Randomness
from Chain
Attributes

CWE-330: Use of Insufficiently
Random Values

PASSED

SW
C-11
9

Shadowing
State Variables

CWE-710: Improper Adherence
to Coding Standards

PASSED

SW
C-11
8

Incorrect
Constructor
Name

CWE-665: Improper
Initialization

PASSED

SW
C-11
7

Signature
Malleability

CWE-347: Improper
Verification of Cryptographic
Signature

PASSED

30

https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-127
https://cwe.mitre.org/data/definitions/695.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-125
https://cwe.mitre.org/data/definitions/696.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-124
https://cwe.mitre.org/data/definitions/123.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-123
https://cwe.mitre.org/data/definitions/573.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-122
https://cwe.mitre.org/data/definitions/345.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-121
https://cwe.mitre.org/data/definitions/347.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-120
https://cwe.mitre.org/data/definitions/330.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-119
http://cwe.mitre.org/data/definitions/710.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-118
http://cwe.mitre.org/data/definitions/665.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-117
https://cwe.mitre.org/data/definitions/347.html

SW
C-11
6

Timestamp
Dependence

CWE-829: Inclusion of
Functionality from Untrusted
Control Sphere

PASSED

SW
C-11
5

Authorization
through
tx.origin

CWE-477: Use of Obsolete
Function

PASSED

SW
C-11
4

Transaction
Order
Dependence

CWE-362: Concurrent
Execution using Shared
Resource with Improper
Synchronization ('Race
Condition')

PASSED

SW
C-11
3

DoS with
Failed Call

CWE-703: Improper Check or
Handling of Exceptional
Conditions

PASSED

SW
C-11
2

Delegatecall
to Untrusted
Callee

CWE-829: Inclusion of
Functionality from Untrusted
Control Sphere

PASSED

SW
C-11
1

Use of
Deprecated
Solidity
Functions

CWE-477: Use of Obsolete
Function

PASSED

SW
C-11
0

Assert
Violation

CWE-670: Always-Incorrect
Control Flow Implementation

PASSED

SW
C-1
09

Uninitialized
Storage
Pointer

CWE-824: Access of
Uninitialized Pointer

PASSED

SW
C-1
08

State Variable
Default
Visibility

CWE-710: Improper Adherence
to Coding Standards

PASSED

SW
C-1
07

Reentrancy
CWE-841: Improper
Enforcement of Behavioral
Workflow

PASSED

SW
C-1
06

Unprotected
SELFDESTRUC
T Instruction

CWE-284: Improper Access
Control

PASSED

31

https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-116
https://cwe.mitre.org/data/definitions/829.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-115
https://cwe.mitre.org/data/definitions/477.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-114
https://cwe.mitre.org/data/definitions/362.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-113
https://cwe.mitre.org/data/definitions/703.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-112
https://cwe.mitre.org/data/definitions/829.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-111
https://cwe.mitre.org/data/definitions/477.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-110
https://cwe.mitre.org/data/definitions/670.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-109
https://cwe.mitre.org/data/definitions/824.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-108
https://cwe.mitre.org/data/definitions/710.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-107
https://cwe.mitre.org/data/definitions/841.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-106
https://cwe.mitre.org/data/definitions/284.html

SW
C-1
05

Unprotected
Ether
Withdrawal

CWE-284: Improper Access
Control

PASSED

SW
C-1
04

Unchecked
Call Return
Value

CWE-252: Unchecked Return
Value

PASSED

SW
C-1
03

Floating
Pragma

CWE-664: Improper Control of
a Resource Through its
Lifetime

PASSED

SW
C-1
02

Outdated
Compiler
Version

CWE-937: Using Components
with Known Vulnerabilities

PASSED

SW
C-1
01

Integer
Overflow and
Underflow

CWE-682: Incorrect
Calculation

PASSED

SW
C-1
00

Function
Default
Visibility

CWE-710: Improper Adherence
to Coding Standards

PASSED

32

https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-105
https://cwe.mitre.org/data/definitions/284.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-104
https://cwe.mitre.org/data/definitions/252.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-103
https://cwe.mitre.org/data/definitions/664.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-102
http://cwe.mitre.org/data/definitions/937.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-101
https://cwe.mitre.org/data/definitions/682.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-100
https://cwe.mitre.org/data/definitions/710.html

33

34

SolidProof_io @solidproof_io

https://t.me/solidproof_io
https://twitter.com/SolidProof_io

	Disclaimer
	Description
	Project Engagement
	Logo
	Contract Link
	Methodology
	Used Code from other Frameworks/Smart Contracts (direct imports)
	Tested Contract Files
	Source Lines
	Risk Level
	Capabilities
	Inheritance Graph
	CallGraph
	Scope of Work/Verify Claims
	Modifiers and public functions
	Source Units in Scope
	Critical issues
	High issues
	Medium issues
	Low issues
	Informational issues
	Audit Comments
	SWC Attacks

